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Abstract

A sensitivity analysis of blast loading parameters is performed to determine which of the parameters’ uncertainties have

the greatest effect on the maximum deflection of a clamped aluminum plate subjected to a blast load. A numerical

simulation using the Monte Carlo method is used to obtain the ensemble averages of the probabilistic runs, with random

variables given uniform distributions. The first loading model has an instantaneous rise with an exponential decay,

represented by the modified Friedlander equation. The second loading model has a linear rise with an exponential decay.

Both of these models are simulated with three different scaled blast loads, giving a total of six different cases. In addition,

the deflection trends due to increases in loading uncertainties are quantified. Probability density functions for the

maximum deflections are estimated. The probabilistic results and trends are also explained using deterministic methods.

It is concluded that response is most sensitive to loading duration time.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the rise of terrorism, the commercial aviation industry has a great need to understand the effects of
an on-board explosion in order to improve the designs of luggage containers and aircraft. It is also important
to locate the areas of the aircraft that are most vulnerable to an explosive load. Knowing these locations and
the amount of loading needed to cause critical failures provides a baseline for explosive detection technologies.
In order to obtain these data, many costly and time consuming experiments are being performed. As an
alternative, finite element codes can help analyze the response of structures to given loading. However, these
codes can be rather time consuming. Therefore, an accurate simplified model of the response of an aircraft
structure subjected to a blast load would be of great use to the aviation industry.

Aside from a simplified response model, an accurate loading model is needed. Many experiments have been
performed to analyze different types of explosives. During these complex and costly blast experiments, a
variety of sensors and devices are used to capture the loading on the structure. The positioning of the sensors
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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and the accuracy of the devices generally lead to uncertainty of loading measurements, exclusive of the
random characterization associated with the explosives.

In this paper, sensitivity analyses of blast loading parameters are performed to determine which blast model
parameter uncertainties has the greatest effects on the maximum deflection of a clamped aluminum plate. In
addition, we quantify how the deflection trends as a result of parameter uncertainties. Such results can be used
to determine beforehand which experimental parameters must be measured most precisely in order to capture
the fundamental behavior of the blast loading and structural response. This will help experimentalists in
deciding which instrumentation and setup will collect the best set of data. Also the number of dangerous,
expensive and time consuming experiments that are needed can be reduced.

For instance, consider an experimentalist who would like to obtain an accurate pressure profile of a
particular explosion in order to study how that size explosion affects a structure. The experimentalist may
want to perform numerous, identical blast experiments and use the average of all the experiments as the final,
‘‘accurate’’ pressure profile. During the experiment there are a number of instruments and equipment that
need to be designed and/or chosen. Even the placement of the instrumentation has a key role in obtaining
proper data. The experimentalist sets up the experiment in a way to obtain the most accurate result. However,
what if the experimentalist had to choose between measuring a certain parameter more precisely verses
another parameter? For example, one can choose an instrument that has a more precise pressure reading than
some other instrument, but does not take the readings as often. This instrument will have less uncertainty to
the pressure reading, however, it will increase the uncertainties of duration time and rise time. This sensitivity
analysis will help determine which of the parameters should be more accurately measured in order to reduce
the amount of uncertainty in the measurements.

We use approximate analytical models to numerically model a clamped, thin aluminum plate, representative
of a fuselage section, subjected to a simplified blast load and calculate the maximum transverse deflection
occurring at the plate’s center. We then randomize the various loading parameters to see how their
uncertainties affect the plate’s maximum deflection. We define sensitivity as the difference between maximum
deflections of the randomized model and the deterministic model.

2. Literature review on blast loading

There have been a few books dedicated to explosive loading. Kinney and Graham wrote the comprehensive
book, ‘‘Explosive Shocks in Air’’ [1], which explains many different aspects and characteristics of explosive
loads. Another extensive book on blast loading is ‘‘Explosions in Air’’ [2] by Baker. Aside from an overview of
explosive loading, this book includes a compilation of experimental equipment and data, as well as some
computational methods. A much cited book that deals with explosive loads is ‘‘Explosion Hazards and
Evaluation’’ [3] by Baker, Cox, Westine, Kulesz and Strehlow. This book has an extensive compilation of
experimental work.

In addition to books, there have been a number of review papers. Florek and Benaroya [4] provide an
extensive review on pulse-loading effects on the deflection of structures. In addition, they summarize efforts
that try to reduce or eliminate these pulse shape effects, which can be done for many rigid-plastic geometries
under a uniform load. A detailed description is provided of research on pressure-impulse isodamage curves
along with some background on the sensitivity of the structural response due to various loading models.

Beshara [5] provides an extensive review of the analysis of unconfined blast loading due to different sources
for above ground rigid structures. He discusses the use of TNT equivalency and blast scaling laws, as well as
the differences between overpressure, reflective pressure and dynamic pressure. Reviewing the available
unclassified literature, Beshara concluded that ‘‘precise loading information is hard to obtain and may be not
justified because of the many uncertainties involved in the interaction process between the blast wave and the
structure and the ideal gas assumption in the derivation of relevant relationsy’’. He adds that the way a blast
load affects the response of a structure does not only depend upon the magnitude of the load, but also on its
duration, rise time and general shape. The implication is that a good blast loading model is important, but its
effects are very sensitive to small changes in these characteristics.

Chock and Kapania [6] review blast scaling, particularly the Hopkinson–Cranz and the Sachs blast scaling.
They then compare two methods for calculating the loading profiles of explosive blasts in air. One method is
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from Baker [2], which uses Sachs scaling and the other method is from Kingery and Bulmash [7], which uses
Hopkinson–Cranz scaling. They concluded that the reflected peak pressures are of a similar order of
magnitude but there is a difference in the specific impulses delivered to the target. For the case given in Chock
and Kapania, Baker’s method has a much lower impulse and an earlier arrival time than Kingery and
Bulmash’s method. They mention that this could be attributed to the difference in duration time, as well as a
change in the way that the decay values are determined. They were unable to determine which of the two
methods is more precise because both methods are based on experimental data, with few or no repeated tests.

Esparza [8] did experimental work on TNT and other high explosives at small scaled distances. He states
that using a single equivalent weight ratio may not be appropriate to characterize an explosive load, especially
at small scaled distances because there is insufficient experimental verification. In regards to TNT equivalency,
he mentions that an equivalent system with only one blast parameter may not be accurate because TNT
equivalence can be significantly different depending on the scaled distance of the explosive, even with the same
type of explosive. Esparza did a study and comparison to published data [7] on the peak overpressure, arrival
time, impulse and positive duration of the blast loads in his experiments. He noticed that the TNT equivalency
for some of the parameters can be significantly different than one based on heat of detonation. In addition, for
small scaled distances, the impulse and positive duration parameters are not as well defined as the pressure and
arrival time parameters.

Gatto and Krznaric [9] performed experiments on explosive loads in aircraft luggage containers. They
measured the pressure profiles on the container panels due to explosions with different amounts of luggage
inside. They noticed that additional luggage reduces the pressure on the container significantly. In addition,
the location of the bag with the explosives has a significant effect on the loading the container experiences.

Simmons and Schleyer [10] did experimental and finite element analysis of the response and failure modes of
stiffened, aluminum alloy panels with conventional riveting and laser welding. They used a pressure chamber
that theoretically gives a triangular pressure pulse on the test structure. They concluded that riveted joints
have greater energy absorbing capacity than laser-welded joints. In addition, the joints’ energy absorption is
sensitive to the load rate.

Gantes and Pnevmatikos [11] proposed a response spectra based on a blast pressure profile with an
exponential distribution and then compared it to one with a triangular distribution. In their work, they used a
technique recommended by the US Department of the Army TM5-1300 [12] which is based upon substituting
the structural element by a stiffness equivalent, single degree-of-freedom system, and using elastic–plastic
response spectra to predict the maximum response of the system. They observed that a triangular distributed
load can sometimes be slightly unconservative compared to the exponential decay load, particularly for
flexible structural systems. In addition, the triangular distributed load can be significantly overconservative
compared to the exponential decay load for stiffer structures. They state that since exponential loading
decreases faster than a triangular one, the differences between the two are influenced more in elastic–plastic
situations than in purely elastic ones. In addition, they provide ranges for certain parameters in which the
differences in blast loading profiles play significant roles in the responses. Referring to Watson [13], the
response depends on synchronization with the rebound of the structure, which means that a good knowledge
of blast load time and space variation are critical to obtain the correct response. In addition, Watson says that
the influence of damping on these systems can be neglected because the peak response of the system occurs
within the first few cycles. This allows for a much simpler response equation.

Bogosian et al. [14] used experimental data to compare a variety of simplified models, including BlastX,
ConWep and SHOCK, to measure the inherent uncertainty in these blast model codes. The data they analyze
are restricted to a Hopkinson–Cranz scaled range of 3–100 ft=lbð1=3Þ. Although their final test database was
comprised 303 individual gage records, they noted that not all were of sufficient duration and/or quality to be
useful. Some have bad peak pressure readings and therefore could not produce reliable impulses. In addition,
the test data were comprised a wide range of configurations from cylindrical to spherical to hemispherical
charges. Different types of explosives were also used, including TNT, C-4 and ANFO, which were converted
into their TNT equivalent load before computing the scaling factors. This shows how difficult it is to obtain a
complete and accurate set of experimental work to analyze and understand the entire spectrum of blast
loadings. However, Bogosian et al. were able to show that, of the tools they analyzed, ConWep best
represented the test data in an overall sense. They also show that BlastX provides values that are close to the
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data set, but SHOCK significantly underpredicts reflected positive pressure and overpredicts reflected positive
impulse. By calculating the standard deviations of the test data, they noticed that their two-sigma values range
from 1

3
to 2

3
in magnitude, which indicates a very wide range of uncertainty.

Trying to obtain a simplified, yet accurate model for blast loadings is a subject for continued research. These
publications, which are mainly focused on loading models, show that there is a great amount of uncertainty
involved when dealing with blast load modeling. In addition, many of the publications show that the response
of a structure is very sensitive to the loading model.

3. Elastic response model

For the elastic region, the response model used here is outlined in Florek and Benaroya [15], which is
developed from the works of Bauer [16], Singh and Singh [17] and Florek [18]. The two fundamental equations
that govern the nonlinear vibration of plates subjected to a time dependent pressure load are given by

r4F ¼
q2w
qxqy

� �2

�
q2w
qx2

q2w
qy2

( )
(1)

and

Eh3

12ð1� n2Þ
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where w is the transverse deflection of the plate, r the mass density of the plate, E the elastic modulus, u
Poisson’s ratio, h the plate thickness, P the loading pressure and r4 � q4=qx4 þ 2q4=qx2qy2 þ q4=qy4. F is the
Airy stress function which is related to the stresses by sx ¼ q2F=qy2; sy ¼ q2F=qx2 and sxy ¼ �q

2F=qxqy,
where sx; sy and sxy are membrane stresses. When using Eqs. (1) and (2), the effects of longitudinal and rotary
inertia forces are neglected.

The transverse deflection of the clamped plate is assumed to be of the form

wðx; y; tÞ ¼ hf ðtÞcos2
px

a
cos2

py

b
, (3)

where a and b are the length and width of the plate, respectively. The origin of the coordinate system x y z is
located at the center of the plate, as shown in Fig. 1. The maximum transverse deflection is equal to hf ðtÞ at
any time t. In order to separate the space and time variables, the Airy stress function is assumed to be of the
form

F ðx; y; tÞ ¼ F�ðx; yÞf 2
ðtÞ. (4)

Substituting Eqs. (3) and (4) into Eq. (1) yields
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Fig. 1. Plate geometry and coordinate system.
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Using Eq. (5), we are able to solve for the Airy stress function, F ðx; y; tÞ, by assuming it is of the form

F ðx; y; tÞ ¼ f 2
ðtÞ C1x2 þ C2y2 þ C3 cos

2px

a
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2py

b
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b
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b

�
, (6)

where the Cn terms are constants. The midplane displacements, u and v, in the x and y directions, are,
respectively,
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Z x
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The boundary conditions for immovable plate edges are

u ¼ 0 and
q2F

qxqy
¼ 0 at x ¼ �

a

2
(9)

and

v ¼ 0 and
q2F
qxqy

¼ 0 at y ¼ �
b

2
. (10)

We then substitute the Airy stress function and Eq. (3) into Eq. (2). The Airy stress function and Eq. (3) satisfy
the boundary conditions as well as Eq. (1). However, as mentioned in Bauer [16], they may not exactly
satisfy Eq. (2). The Galerkin method is used with the assumed mode shape for the clamped plate to set up the
residue equation Z b=2

0

Z a=2

0

R cos2
px

a
cos2

py

b
dxdy ¼ 0, (11)

which results in the nonlinear elastic equation of motion for a clamped plate [18],
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P is the uniform loading pressure. Numerically solving Eq. (12) for f ðtÞ yields the deflection at the center of the
plate, hf ðtÞ, until the plate yields.

3.1. Yield condition

In order to determine when the response is no longer in the elastic region governed by Eq. (12), a von Mises
yield condition is initially used. As outlined in Florek and Benaroya [15], the von Mises condition given by
Massonnet [19] is

Y c �
M2

x þM2
y �MxMy þ 3M2

xy

M2
0

þ
N2

x þN2
y �NxNy þ 3N2

xy

N2
0

� 1 ¼ 0, (13)

where Mk represents the elastic bending moments per unit length and Nk represents the elastic membrane
forces per unit length, in the k direction. M0 and N0 are the plastic bending moment per unit length and the
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plastic membrane force per unit length, respectively. Lee [20] gives these parameters as
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,

N0 ¼ s0h; (14)

where s0 is the dynamic yield stress of the plate material. The dynamic yield stress is the stress level at which
point the material begins to flow.

Using the Airy stress function, Eqs. (3), (13) and (14), we obtain the von Mises yield criterion for a clamped
plate,
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E2h4p4
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where
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Once Y c40, the plate begins to yield. As per Massonnet [19], it is assumed that the elastic–plastic interactions
in a membrane are negligible and, after yielding begins, the response enters the purely plastic region. In the
plastic region a new model is needed to represent the response of the plate. However, once the deflection of
the plate begins to decrease, it does so elastically and is then modeled using the elastic model. At this point, the
deflection at yielding becomes the maximum displacement the plate has previously reached. Therefore, once
the plate deflection surpasses the previous maximum deflection, the plastic model is used until the deflection
begins to decrease, and so forth. Note that for the loads presented here, the plastic region is never reached
more than once.
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Fig. 2. Rooftop geometry of plastic deformation: (a) plan view, (b) isometric view.
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4. Plastic response model

The plastic model used is Jones’ hinge line method [21,22]. This method assumes a plastic deformation in the
shape of a rooftop, shown in Fig. 2, with all the energy of the system dissipating through the hinge lines.
Assuming that the in-plane displacements, velocities and accelerations are negligible, as well as assuming the
geometry of deformation, an energy relationship between the external and inertial work rates and the internal
energy dissipation is established. Assuming the angle f ¼ 45�, as per Nurick et al. [23], the final equation given
in Florek and Benaroya [15] for the plastic model of a clamped plate is

rb2

s0h
2a

b
� 1

� �
€wþ

24a

b

w

h
þ 8

h

w
¼

Pb2

s0h
2

3a

b
� 1

� �
. (16)

Solving for w results in the maximum transverse deflection of the clamped, rectangular plate.

4.1. Failure criteria

To determine whether the plate fails due to the blast load, the maximum allowable transverse deflection for
the aluminum plate is calculated. This is done using the rupture strain value of 18% for aluminum 2024-T3
[24]. Since the deflection of the plate within the plastic region is the rooftop shape shown in Fig. 2, the smaller
side of the rectangular plate, b, will be the limiting factor for failure. Making sure line l in Fig. 2 does not
elongate 18% of its original length, the maximum possible transverse deflection before failure is calculated.
The plate properties used for all cases in this study are shown in Table 1. These dimensions and properties of
the plate represent the aluminum skin of a commercial aircraft’s midsection between its frames and stringers.
Using these dimensions the failure deflection, maximum allowable value of w, is approximately 63:6mm. If the
deflection reaches this value the plate is considered to fail.

5. Loading model

For a blast load, chemical investigation and experimental data [1–3,8,9] show that a good representative
simplified model is an exponential time history. One of the most frequently used blast model is an exponential
decay model with an initial peak pressure governed by the modified Friedlander equation,

PðtÞ ¼

0; 0ptpTa;

Pmax 1�
t

Tdur

� �
e�aðt=TdurÞ; TaptpTdur;

0; Tdurpt;

8>>><
>>>:

(17)

where PðtÞ is the overpressure at time t, Pmax is the maximum overpressure, Ta is the arrival time from
detonation point to the object, Tdur is the overpressure duration time and a is the exponential decay constant.
Fig. 3 is a graphical representation of this simplified loading model, where P0 is the ambient pressure. The
modified Friedlander equation neglects any negative overpressure phase of a blast load. The negative
overpressure phase is that below ambient pressure that sometimes occurs at the tail end of a blast load. As
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Table 1

Plate properties.

a 508mm (20.0 in)

b 203mm (8.00 in)

h 1.60mm (0.0630 in)

r 2780kg=m3

E 7.31GPa

v 0.330

s0 345GPa

Fig. 3. Simplified blast loading model representative of the modified Friedlander equation, where the negative overpressure phase after

time Tdur has been cutoff.
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Gantes and Pnevmatikos [11] mention, this pressure phase is less significant as a is larger than one. In this
study we chose loading profiles which satisfy this criterion. We also assume the explosive is far enough away
from the object that we can approximate the loading as a planar blast wave over the entire object. In addition,
since the arrival time does not affect the response of the plate in this study, the arrival time is set to zero.

Two types of simplified blast loading models are considered, as shown in Figs. 4a and b. Load 1 is the
common modified Friedlander model described previously and Load 2 is the same except for the linear rise
rather than the instantaneous rise. Load 2 is governed by

PðtÞ ¼

ðPmax=TmaxÞt; 0ptpTmax;

Pmax 1�
t� Tmax

Tdur

� �
e�aðt�TmaxÞ=Tdur ; TmaxptpTdur;

0; Tdurpt;

8>>><
>>>:

(18)

where the rise time, Tmax, is the time at which the maximum pressure occurs.

5.1. Obtaining parameter values

Using the Hopkinson–Cranz blast scaling law, the values of Pmax, Tdur and a, are characterized by the scaled
distance, Z,

Z ¼
R

M1=3
, (19)
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Fig. 4. (a) Load 1. Instantaneous rise with an exponential decay. (b) Load 2. Linear rise with an exponential decay.
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where R is the standoff distance between the spherical charge center and the plate in meters, and M is the
charge mass, which is expressed in kilograms of equivalent TNT. Two blast loads are considered to have the
same loading profile if they have the same Z value. The smaller the Z value, the stronger the blast load.

Using the program ConWep [25], it is possible to generate the loading parameter values for various air
blasts. This computer simulation uses values gathered through experiments given in the government manual
TM 5-855-1, which makes use of Kingery and Bulmash [7]. According to Esparza [8], Kingery and Bulmash
supply polynomial curve fits from values found in various literature [26–30]. For appropriate Z values,
ConWep provides values for the normally reflected overpressure, which is used for Pmax, and the positive
phase duration, which is used for Tdur of the exponential decay.

ConWep does not provide the decay constant for the reflected pressure. Therefore, it needs to be calculated
using the reflected impulse, I r, which ConWep does provide. Knowing that

Ir ¼

Z Tdur

0

PðtÞdt, (20)

where P is the overpressure given by Eq. (17), one can find that

PmaxTdure
�aðaea � ea þ 1Þ

a2
� Ir ¼ 0. (21)

Substituting the ConWep values of Pmax, Tdur and Ir into Eq. (21) allows one to find the decay constant, a,
numerically.

Since there is no widely used loading model representative of Load 2, there is no convention or table of
values to calculate Tmax. Experimental pressure loads [9,31] show the rise time to be very short. In the scaling
of milliseconds, the rise times seem to be nearly instantaneous in many experiments. Depending on the
instrumentation, experimental setup and explosive used the rise times may be difficult to obtain accurately. In
addition, the larger the load, the faster the rise time. Typical values for rise times can vary from a few
microseconds to milliseconds depending on the explosive used, the amount used and the distance to the target.
We decided to estimate Tmax as a percentage of the blast’s arrival time because the arrival time is
representative of its speed and initial distance to the object and contains the trend just mentioned. By
examining a few cases and designing Loads 1 and 2 to have some differences in shape, it was determined that
the rise time, Tmax, would be set equal to 10% of the arrival time, which can be obtained through ConWep. In
addition, in order for the exponential decay of Load 2 to have the same shape as Load 1, the value of Tmax

must be added to the value of Tdur of Load 1 to obtain the value of Tdur for Load 2.
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5.2. Six cases

Three values of the scaled distance Z are used: Z ¼ 0:7, 1.2 and 2.0. The values obtained for the loading
parameters of Loads 1 and 2 for each Z case studied here are shown in Tables 2 and 3, respectively. Figs. 5
and 6 show the first 0:8ms of the loading profiles for each Z value of Loads 1 and 2, respectively.
6. Parameter sensitivities

Before randomizing the various loading parameters to determine their sensitivity, we first must determine
the deterministic responses and maximum deflections. Using a fourth-order Runge–Kutta method, as
described by Jaluria [32], the response is deterministically solved for each of the six loading cases. Fig. 7 shows
the deterministic responses for Cases 2 and 5. The deflections are elastic from 0 to 0:127ms and from 0 to
0:150ms for Cases 2 and 5, respectively. From 0:127 to 0:336ms and from 0:150 to 0:377ms the responses are
plastic for Cases 2 and 5, respectively. After 0:336ms and 0:377ms, for Cases 2 and 5, respectively, the
responses decrease elastically and continue to be modeled elastically since the deflection never surpasses the
previous maximum deflection. Table 4 lists the maximum deflections of the plate for each case. As expected,
the maximum deflections of the plate are larger for the cases with smaller Z values. In addition, for a
particular Z value, Load 2 produces a larger maximum deflection than Load 1. This is due to the extra impulse
from under the linear-rise region of Load 2. The smallest Z value of 0:7 was chosen so that the maximum
deflection from the deterministic run was just under the allowable maximum deflection before plate failure.

After the deterministic solutions have been calculated, one of the loading parameters is assumed random
while leaving the remaining variables deterministic. The ensemble average of the response is evaluated using a
Monte Carlo scheme as described by Benaroya and Han [33]. This procedure is repeated for each loading
parameter and case. By comparing the maximum deflections of the random runs to the deterministic run for
each loading case, the sensitivity of each loading parameter is calculated per case. A random parameter is
considered more sensitive to uncertainty if the difference of maximum deflections of the plate between the
deterministic and probabilistic models is greater.
6.1. Probability distribution

Since blast loads are so complex that they may be modeled as random, and there is little information on the
different loading parameters’ randomness, all the random variables are assumed to have uniform probability
Table 2

Loading parameter values of the three Z cases for Load 1.

Loading parameter Case 1 Case 2 Case 3

Z ¼ 0:70 Z ¼ 1:2 Z ¼ 2:0

Pmax Maximum pressure 13.40MPa 2.900MPa 0.6458MPa

Tdur Duration time 0.8346ms 1.792ms 1.846ms

a Decay constant 11.296 10.784 3.7365

Table 3

Loading parameter values of the three Z cases for Load 2.

Loading parameter Case 4 Case 5 Case 6

Z ¼ 0:70 Z ¼ 1:2 Z ¼ 2:0

Pmax Maximum pressure 13.40MPa 2.900MPa 0.6458MPa

Tdur Duration time 0.8622ms 1.867ms 2.040ms

a Decay constant 11.296 10.784 3.7365

Tmax Rise time 0.02765ms 0.0750ms 0.1944ms
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Fig. 5. Loading profiles of Load 1 with Z ¼ 0:7 ð. . .Þ, Z ¼ 1:2 (—) and Z ¼ 2:0 (- - -). Although the duration times for each case are

greater, only the first 0.8ms are shown in this figure. Also note, in this scaling due to the larger overpressure of the Z ¼ 0:7 case, the

appearance of the larger Z value cases begin to lose their exponential decay shape.

Fig. 6. Loading profiles of Load 2 with Z ¼ 0:7 ð. . .Þ, Z ¼ 1:2 (—) and Z ¼ 2:0 (- - -). Although the duration times for each case are

greater, only the first 0.8ms are shown in this figure. Also note, in this scaling due to the larger overpressure of the Z ¼ 0:7 case, the

appearance of the larger Z value cases begin to lose their exponential decay shape.
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Fig. 7. Deterministic defections for Cases 2 (—) and 5 (- - -). The deflections are elastic from 0 to 0.127ms and from 0 to 0.150ms for

Cases 2 and 5, respectively. From 0.127 to 0.336ms and from 0.150 to 0.377ms the responses are plastic for Cases 2 and 5, respectively.

After 0.336 and 0.377ms, for Cases 2 and 5, respectively, the responses decrease elastically and continue to be modeled elastically since the

deflection never surpasses the previous maximum deflection.

Table 4

Maximum deflections of deterministic solution.

Case Max. defection (mm)

1 48.1813

2 20.8533

3 10.1719

4 58.9217

5 25.5814

6 11.4930

E. Borenstein, H. Benaroya / Journal of Sound and Vibration 321 (2009) 762–785 773
density. In addition, using a uniform density makes it easier to specify a range of values for each random
variable. In this paper, the term half-range (HR) is used to define the range between the mean value and the
upper or lower values of the parameter. This is half of the total range in a uniform distribution. For a uniform
density, the standard deviation s is related to the half-range by the relation

s ¼
HRffiffiffi
3
p . (22)

See Fig. 8. Each random variable’s half-range is given as a percentage of its mean value. This also allows for a
direct comparison between the various random parameters.

The deterministic parameter values shown in Tables 2 and 3 are taken to be the mean values. To obtain
realizations for each parameter, a standard uniform number is generated and then transformed using

nðrÞ ¼ mðrÞ þHRðrÞ � ð2� rand� 1Þ, (23)

where nðrÞ is the realization for parameter r, mðrÞ is the mean value and HRðrÞ is the half-range, where

HRðrÞ ¼ mðrÞ �HRf (24)
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Fig. 8. Visual representation of half-range where m is the mean and HR represents the half-range.

Fig. 9. In these figures, each deflection is for a simulation where Pmax (—), Tdur (- - -), a (– � – � –) or Tmax ð. . .Þ, is the random variable

with (a) HRf ¼ 0:2 and (b) HRf ¼ 0:8 for Case 5. For example, the solid line deflection is for the simulation where Pmax is the random

variable.
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and HRf is the half-range factor. The half-range factor is a number between 0 and 1 that determines the level
of uncertainty for the random parameter. The closer the half-range factor is to 1 the higher the level of
uncertainty. The function rand is an internal MATLAB function that generates a uniformly distributed
random number between 0 to 1. For each random variable run, the seed for the rand command in MATLAB
is reset. This ensures that the same sequence of random numbers are generated for each run.

6.2. Averaging response

The average response in the Monte Carlo method must be calculated at every time step since the loading
and response of the plate are time dependent. This procedure is known as ensemble averaging. Only the runs
for which the plate does not fail are factored into the averaged response since response Eqs. (12) and (16) are
not valid when the plate fails. The time stepping value for the program is set at 0:5ms. This is a very small time
step, even for blast loads, but this value allows for accurate tracking.

For all the following results, the labeled variable is the loading model parameter that is the random variable
for that particular result. Figs. 9a and b are time histories of the average deflections produced for each random
variable of Case 5 when HRf ¼ 0:2 and 0:8, respectively. These time histories tend to decay more rapidly as
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the uncertainty is increased. In addition, the deflection shape sensitivity is greatest when Pmax is the random
variable.

Figs. 10a–d show the responses for select cases when HRf ¼ 0:8. For all cases, the maximum deflection
occurs at the first local maximum. Thus, the deflections reach the plastic region only once for all cases.

Tables 5–10 show results with various HRf for Cases 1–6, respectively. The random variable All represents
runs where all of the loading parameters are random. For each random variable and case, the difference in
maximum deflection, D, is calculated using

D ¼ detmax � probmax, (25)

where detmax is the maximum deflection of the deterministic model and probmax is the maximum deflection of
the averaged response for the probabilistic model. In addition to D, the percent error of the maximum
deflection, % Error, is calculated by

%Error ¼
jDj

detmax
� 100. (26)
Fig. 10. Average deflections with HRf ¼ 0:8 for (a) Case 1, (b) Case 2, (c) Case 4 and (d) Case 6 where Pmax (—), Tdur (- - -), a (– � – � –) or
Tmax ð. . .Þ, is the random variable. The maximum deflection of the response for all cases occurs at the first local maximum.
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Table 5

Case 1 differences, percent errors and probability of plate failures.

Random variable D (mm) % Error Prob. of failure

Half-range ¼ 10% of the mean ðHRf ¼ 0:1Þ
Pmax �0.0221 0.0458 0

Tdur �0.2383 0.4945 0

a 0.0057 0.0118 0

All �0.1333 0.2766 0

Half-range ¼ 40% of the mean ðHRf ¼ 0:4Þ
Pmax �1.4066 2.9194 0.0821

Tdur �0.9560 1.9841 0

a �0.2262 0.4694 0.0812

All �5.5229 11.4627 0.1833

Half-range ¼ 80% of the mean ðHRf ¼ 0:8Þ
Pmax �10.5214 21.8371 0.2906

Tdur �8.9209 18.5152 0.2215

a �5.5163 11.4491 0.2929

All �17.0795 35.4485 0.3017

Table 6

Case 2 differences, percent errors and probability of plate failures.

Random variable D (mm) % Error Prob. of failure

Half-range ¼ 80% of the mean ðHRf ¼ 0:8Þ
Pmax 0.2165 1.0381 0

Tdur �1.3229 6.3436 0

a 1.0026 4.8079 0

All �0.3126 1.4989 0

Table 7

Case 3 differences, percent errors and probability of plate failures.

Random variable D (mm) % Error Prob. of failure

Half-range ¼ 80% of the mean ðHRf ¼ 0:8Þ
Pmax �0.2628 2.5833 0

Tdur �0.5073 4.9874 0

a 0.0682 0.6707 0

All �0.7307 7.1836 0
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The probability of plate failure is also given for each probabilistic run. The percent errors are a measure of
how much sensitivity the parameters have to uncertainty. The larger percent error a random variable
produces, the greater that parameter’s sensitivity is to uncertainty. Note, the percent errors are calculated
using the maximum deflections of the averaged responses, which do not include any of the runs with plate
failures. As expected, these percent errors increase as the uncertainty, or HRf value, increases. For a given
case, as HRf increases the random variables’ sensitivity to uncertainty (i.e., percent errors) maintain the same
sequence when ordered from greatest to least. For instance, looking at Case 1, Table 5, the order of random
variables from greatest to least percent error when HRf ¼ 0:8 is All, Pmax, Tdur and then a. One can see that
this is the same order when HRf ¼ 0:4 for Case 1. This is always true except when the percent errors are very
small.

For Cases 2, 3 and 5, the duration time, Tdur, is the most sensitive parameter due to uncertainty since the
greatest percent error for those cases occurs when Tdur is the random variable. In addition, for Cases 2 and 5,



ARTICLE IN PRESS

Table 8

Case 4 differences, percent errors and probability of plate failures.

Random variable D (mm) % Error Prob. of failure

Half-range ¼ 10% of the mean ðHRf ¼ 0:1Þ
Pmax �0.4683 0.7948 0.0841

Tdur �0.2236 0.3795 0

a 0.0134 0.0227 0

Tmax 0.003 0.0051 0

All �1.2499 2.1213 0.1493

Half-range ¼ 40% of the mean ðHRf ¼ 0:4Þ
Pmax �8.9262 15.1493 0.3993

Tdur �5.8432 9.9169 0.3318

a �4.051 6.8753 0.3431

Tmax �0.038 0.0645 0

All �11.3514 19.2652 0.3838

Half-range ¼ 80% of the mean ðHRf ¼ 0:8Þ
Pmax �20.2262 34.3273 0.4518

Tdur �14.5803 24.7452 0.4095

a �8.6061 14.6061 0.4209

Tmax �1.2879 2.1858 0.1678

All �24.3052 41.2500 0.4057

Table 9

Case 5 differences, percent errors and probability of plate failures.

Random variable D (mm) % Error Prob. of failure

Half-range ¼ 10% of the mean ðHRf ¼ 0:1Þ
Pmax 0.0424 0.1657 0

Tdur �0.0452 0.1767 0

a 0.0444 0.1736 0

Tmax 0.0061 0.0238 0

All 0.0186 0.0726 0

Half-range ¼ 40% of the mean ðHRf ¼ 0:4Þ
Pmax 0.0553 0.2161 0

Tdur �0.4719 1.8448 0

a 0.1209 0.4728 0

Tmax �0.0657 0.2568 0

All �0.2885 1.1276 0

Half-range ¼ 80% of the mean ðHRf ¼ 0:8Þ
Pmax 0.2588 1.0117 0

Tdur �1.5168 5.9294 0

a 0.6462 2.5261 0

Tmax �0.3630 1.4191 0

All �1.1466 4.4823 0
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parameter Tdur is more sensitive to uncertainty than when all the parameters are assumed random at the same
time. This is due to the fact that when parameter a is the random variable, the averaged response tends to have
an increase in its maximum deflection as the random variable’s uncertainty increases. In contrast, when the
other parameters are assumed random, the averaged responses tend to have a decrease in the maximum
deflection as the random variables’ uncertainties increase. For Case 6, the most sensitive parameter due to
uncertainty is the rise time, Tmax. The reason for random variable Tmax to have the highest sensitivity to
uncertainty for this case is because the mean value of Tmax is an order of magnitude greater in Case 6 than the
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Table 10

Case 6 differences, percent errors and probability of plate failures.

Random variable D (mm) % Error Prob. of failure

Half-range ¼ 80% of the mean ðHRf ¼ 0:8Þ
Pmax �0.0928 0.8076 0

Tdur �0.3679 3.2012 0

a 0.0141 0.1223 0

Tmax �0.4002 3.4817 0

All �0.8675 7.5483 0
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other cases, making the linear rise part of the forcing function the main contributor to the load. However, the
sensitivity of parameter Tdur is very close to parameter Tmax’s sensitivity to uncertainty.

Only Cases 1 and 4 have results with probability of plate failures greater than zero. As seen in Tables 5
and 8, the probability of plate failures increase as the uncertainty increases. With a higher probability of plate
failure, a greater number of runs with high deflections are not included in the averaged response. This means
that the more plate failures there are, the lower the averaged response tends to be compared to the
deterministic deflection. This yields to a greater percent error.

At low levels of uncertainty for Case 1, where there are no plate failures, Tdur is the most sensitive parameter
due to uncertainty. However, as the uncertainty increases and the probability of plate failures increase, Pmax

becomes the most sensitive parameter due to uncertainty for Case 1. When all the parameters are random, the
probability of plate failure for Case 1 is the greatest at 30:17%. When a and Pmax are random the probability
of plate failures are 29:29% and 29:06%, respectively.

For Case 4, Pmax is the most sensitive parameter due to uncertainty. Random variable Pmax also produces
the greatest probability of plate failure as uncertainty increases. In fact, when HRf ¼ 0:8, random variables
Pmax and Tdur produce a greater probability of plate failure than when all the parameters are random at the
same time.

6.3. Standard deviations

The standard deviation for each time step is calculated by

sðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðwiðtÞ � waveðtÞÞ

2

N

s
, (27)

where sðtÞ is the standard deviation at time t, wiðtÞ is the response of run i at time t, N is the number of runs
that do not have plate failures and waveðtÞ is the averaged response. This standard deviation is a measure of the
spread, or scatter, of the response values. The standard deviation is also useful for creating confidence bounds.
Figs. 11a and b depict the deflections with random variable Tdur along with one standard deviation bounds for
Case 2 when HRf ¼ 0:2 and 0:8, respectively. As expected, as the uncertainty increases, the standard deviation
of the response increases.

In addition to the time dependent standard deviation described by Eq. (27), the standard deviation of the
maxima of each run is also calculated. For this standard deviation there is no time dependence and the
maxima of each run are taken regardless of when they occur. The equation is

smax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðwmaxi

� wavemax
Þ
2

N

s
, (28)

where smax is the standard deviation of the maxima, wmaxi
is the maximum value of run i, N is the number of

runs that do not have plate failures and wavemax
is the maximum of the averaged response. These standard

deviations of maximum values increase as the half-range increase. This is what would be expected since a
higher half-range implies a more random and scattered result. Table 11 shows the results for all the cases and
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Fig. 11. Deflection (–) and one standard deviation bounds (- - -) for Case 2 for random variable Tdur and (a) HRf ¼ 0:2 and (b)

HRf ¼ 0:8.

Table 11

Standard deviation of maximum values when HRf ¼ 0:8.

HRf ¼ 0:8 Pmax (mm) Tdur (mm) a (mm) Tmax (mm) All (mm)

Case 1 15.17 14.82 9.27 N/A 15.63

Case 2 8.16 5.68 5.65 N/A 11.77

Case 3 2.52 1.35 0.84 N/A 3.01

Case 4 14.56 11.67 6.25 3.52 14.71

Case 5 10.39 5.03 4.80 1.83 12.69

Case 6 3.13 0.85 0.49 0.36 3.11
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variables when HRf ¼ 0:8. For most cases, the largest standard deviation occurs when all the variables are
random. For the individual parameters, the order of standard deviations from greatest to least is Pmax, Tdur, a
and then Tmax.

7. Trends of maximum deflection as uncertainty increases

In order to see the trends of the plate’s maximum deflection as the uncertainty of each parameter increases,
the averaged response was calculated 100 times per random variable, with random half-ranges from 0% to
80% of the random variable’s mean. The maximum deflection of each averaged response is then plotted
against a normalized half-range, defined as the half-range value divided by 80% of the random variable’s
mean. This allows for a direct comparison between the various loading parameters’ trends. Fig. 12 shows the
results for Case 5. For Cases 2 and 5, as the uncertainty in parameter Pmax increases, the maximum deflection
of the plate tends to be constant but with a larger scatter. For all the other cases, the maximum deflection of
the plate tends to decrease as parameter Pmax’s uncertainty increases. For all six cases, the plate’s maximum
deflection tends to decrease as the uncertainty increases in parameters Tmax, Tdur and when all of the
parameters are random. For the cases with no plate failures (Cases 2, 3, 5 and 6) the plate’s maximum
deflection tends to increase as the uncertainty of parameter a increases.

Fig. 13a shows the maximum deflection trends of each parameter for Case 4. This plot shows a decreasing
maximum deflection trend for all the parameters, which is also true for Case 1. However, as mentioned before,
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Fig. 12. Scatter plot of maximum deflections vs. normalized half-range for Case 5 where Pmax (*), Tdur ð�Þ, a ð%Þ, Tmax ð�Þ, or All ð�Þ is the

random variable.

Fig. 13. (a) Scatter plot of maximum deflections vs. normalized half-range for Case 4 where Pmax (*), Tdur ð�Þ, a ð%Þ, Tmax ð�Þ, or All ð�Þ is

the random variable. (b) Probability of failure vs. normalized half-range for Case 4 where Pmax (*), Tdur ð�Þ, a ð%Þ, Tmax ð�Þ, or All ð�Þ is

the random variable.
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this is due to the fact that the runs with plate failures, which have a high deflection, are not included in the
averaged response. For Cases 1 and 4, the maximum deflection decreases the most with increasing uncertainty
when all of the parameters are random. For the individual random parameters, the maximum deflection when
Pmax is the random variable decreases the most with increasing uncertainty. This decreasing maximum
deflection trend is highly related to the probability of failure for each parameter.

Fig. 13b shows the probability of plate failure as uncertainty increases for each parameter of Case 4. Each
random parameter initially shows a zero probability of plate failure and then at a certain level of uncertainty,
the probability of plate failure begins to increase as the uncertainty increases. For both Cases 1 and 4, as
uncertainty increases, plate failures are first observed when all the parameters are random. For Case 1, for
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random variables Pmax and a, plate failures begin to occur around the same level of uncertainty at a
normalized half-range of about 0:42. For random variable Tdur the plate failures do not start to occur until a
higher level of uncertainty, which is at a normalized half-range of 0:55. For the individual parameters of Case 4,
when Pmax is the random variable the response begins to show plate failures first, which is at a normalized half-
range of 0:1. For random variables Tdur and a, plate failures begin to occur around the same level of
uncertainty, which is at a normalized half-range of about 0:17. For Case 4, random variable Tmax results in the
smallest probability of plate failure and a zero probability of plate failure until a normalized half-range of
about 0:68, which is a larger level of uncertainty compared to the other parameters. By observing Figs. 13a
and b, it can be seen that as each probability of plate failure begins to increase, the corresponding maximum
deflection of the plate begins to decrease.
8. Probability densities for maximum deflection

The probability density functions of the plate’s maximum deflections for Case 5 when HRf ¼ 0:8 are
presented in Figs. 14a–d. Although only Case 5 is shown here, the other cases have similar shapes for each
Fig. 14. Probability density of maximum deflection in Case 5 with HRf ¼ 0:8 for random parameters: (a) Pmax using 5173 simulation runs,

(b) Tmax using 1756 simulation runs, (c) Tdur using 5622 simulation runs and (d) a using 5451 simulation runs.
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random parameter. The probability density functions due to random parameters Pmax and Tmax, shown in
Figs. 14a and b, respectively, have a uniform distribution. However, as Fig. 14c shows, random variable Tdur

leads to a probability density function that has more area under larger maximum deflections. This means there
is a greater probability of obtaining higher maximum deflections when Tdur is the random variable.
Conversely, Fig. 14d shows the probability density function due to random variable a has more area under the
smaller maximum deflections, giving a greater probability to obtain lower deflections. These figures are very
useful to show the range of the plate’s maximum deflections given a particular random variable. In addition,
they can be used to generate confidence bounds.
9. Using deterministic results to explain probabilistic results

To understand why these probability density functions are shaped this way, as well as to explain the trends
of the maximum deflection as uncertainty increases, the deterministic, maximum deflection for each parameter
is calculated for all the values within the full range of minus to plus 80% of that variable’s mean. Figs. 15a–d
Fig. 15. Deterministic results for maximum deflection in Case 5 for parameters: (a) Pmax, (b) Tmax, (c) Tdur and (d) a. The range for each
parameter is its full range when HRf ¼ 0:8.
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show these results for Case 5. For parameters Pmax and Tmax the maximum deflection of the response increases
in a linear way as the parameter values increase. Due to this relationship, if a uniform distribution of the
parameter is taken around the mean value, the response will also have a uniform distribution with a mean
deflection equal to the deflection of the parameter’s mean value. This also explains why random parameters
Pmax and Tmax have a straight horizontal maximum deflection trend for Case 5, because their averages with a
uniform distribution, or any distribution that is symmetric about its mean value, will be the deflection at the
mean value.

For parameter Tdur, shown in Fig. 15c, the maximum deflection increases with a concave down curve as the
parameter values increase. Since the curve is concave down, the average maximum deflection of two points
equidistant and on opposite sides of the mean will be less than the maximum deflection at the mean value, as
seen in Fig. 16. This explains why the maximum deflection trends of random parameter Tdur are decreasing as
its uncertainty increases. In addition, since the slope of the maximum deflection curve decreases as a function
of Tdur, when one takes values within a fixed range, there will be a greater spread of maximum deflections at
the lower values of Tdur than at the higher values. Also, since the maximum deflections are closer together in
the higher values of Tdur than at the lower Tdur values for a fixed range, the probability of the maximum
deflections at the higher Tdur range are greater. Thus, the probability density function is increasing as shown
in Fig. 14c.

For parameter a, shown in Fig. 15d, the maximum deflection of the response decreases as a function of a.
Since the curve is concave up, the average of the maximum deflections with a uniform distribution will be
greater than the maximum deflection at the mean value, which explains why the maximum deflection trend for
parameter a is increasing as its uncertainty increases. Fig. 15d shows the slope of the maximum deflection
curve increases as a function of a. Thus the probability density function for random parameter a is decreasing
as shown in Fig. 14d.

10. Summary of key results and conclusion

A random variable analysis of simplified blast loading model parameters is conducted to determine their
sensitivity to uncertainty. In addition, some probabilistic analyses and observations of trends are performed as
the uncertainties of the parameters increase. Six different loading cases, listed in Tables 2 and 3, were analyzed
in this work.

For Cases 2, 3 and 5, deflections are most sensitive to uncertainty in Tdur. For Cases 1 and 4, Pmax becomes
the most sensitive parameter to uncertainty once the plate begins to fail for some of the runs. However, for the
lower levels of uncertainty, before the plate begins to fail for any of the runs, Tdur is the most sensitive
parameter to uncertainty. The reason for this transition is because the runs with plate failures are not included
in the averaged response. Due to the fact that the linear rise of Case 6 is the main contributor of the load,
parameter Tmax is the most sensitive to uncertainty, although parameter Tdur’s sensitivity to uncertainty
Fig. 16. Visual explanation for why the average value of a concave down plot with a fixed range will always be less than the value at the

middle of that range.
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(i.e., percent error) is almost the same. In addition, according to Esparza [8], Tdur is the most difficult of the
parameters to measure, especially at small scaled distances. This means that in order to obtain a more accurate
result, the measurement precision of Tdur needs to be improved upon more than those of the other parameters.

Besides determining which parameter is more sensitive to uncertainty, trends of the plate’s maximum
deflection due to the uncertainty level of loading parameters are examined. Uncertainty in parameter a tends
to increase the maximum deflection of the plate, while the rest of the parameters’ uncertainties tend to decrease
it or keep it the same.

The maximum deflection probability density functions are created and show a uniform distribution for the
parameters Pmax and Tmax, while the parameter Tdur has a distribution with positive slope and parameter a has
a distribution with negative slope.

Finally, by examining deterministic plots of the plate’s maximum deflection over the range of each
parameter, many of the trends and features are able to be explained. This method can be applied to a wide
range of problems.

The introduction of randomness in the key model parameters leads to significant differences in the
mathematical predictions of the physical behavior of the system. Within that probabilistic description via the
density function, the standard deviation—or measure of uncertainty—will determine the frequency of failure
and the range of peak displacements. How the modeler selects these probabilistic parameters is important. Is
the uncertainty due to a lack of knowledge about the process or due to the complexity and sensitivity of the
process and thus its irreproducibility? Therefore, the predictions need to be examined in two parts. The first is
related to the physical model and its applicability. The second is related to the probabilistic model and the
degree to which it is knowledge-based.

Our mathematical model is a reduced-order model that is based on reasonable assumptions. Improvements
are possible by relaxing assumptions, but at some point the mathematical difficulties outweigh the benefits of
the reduced-order model and a larger scale computational model would make more sense. Our probabilistic
model is non-presumptive, meaning that by using uniform densities for the parameters we are assuming that
we only have confidence about the upper and lower bounds of the parameter values, and have no knowledge
about their possible values within those bounds. As such, we can make relative physical conclusions on the
system behavior, and how sensitive system behavior is to parameter probabilistic variations.

As we see from our results, such sensitivity is case dependent. Our view is that these results provide a guide
to the experimentalist as well as to the analyst on the importance of particular data to the resulting behavior.
These results suggest where the major efforts should be made for more accurate data.
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